The Effect of Slow Electrical Stimuli to Achieve Learning in Cultured Networks of Rat Cortical Neurons

نویسندگان

  • Joost le Feber
  • Jan Stegenga
  • Wim L. C. Rutten
چکیده

Learning, or more generally, plasticity may be studied using cultured networks of rat cortical neurons on multi electrode arrays. Several protocols have been proposed to affect connectivity in such networks. One of these protocols, proposed by Shahaf and Marom, aimed to train the input-output relationship of a selected connection in a network using slow electrical stimuli. Although the results were quite promising, the experiments appeared difficult to repeat and the training protocol did not serve as a basis for wider investigation yet. Here, we repeated their protocol, and compared our 'learning curves' to the original results. Although in some experiments the protocol did not seem to work, we found that on average, the protocol showed a significantly improved stimulus response indeed. Furthermore, the protocol always induced functional connectivity changes that were much larger than changes that occurred after a comparable period of random or no stimulation. Finally, our data shows that stimulation at a fixed electrode induces functional connectivity changes of similar magnitude as stimulation through randomly varied sites; both larger than spontaneous connectivity fluctuations. We concluded that slow electrical stimulation always induced functional connectivity changes, although uncontrolled. The magnitude of change increased when we applied the adaptive (closed-loop) training protocol. We hypothesize that networks develop an equilibrium between connectivity and activity. Induced connectivity changes depend on the combination of applied stimulus and initial connectivity. Plain stimuli may drive networks to the nearest equilibrium that accommodates this input, whereas adaptive stimulation may direct the space for exploration and force networks to a new balance, at a larger distance from the initial state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of phasic electrical locus coeruleus stimulation on inhibitory and excitatory receptive fields of layer V barrel cortex neurons in male rat

Introduction: It is believed that Locus Coeruleus (LC) influences the sensory information processing. However, its role in cortical surround inhibitory mechanism is not understood. In this experiment, using controlled mechanical displacement of whiskers we investigated the effect of phasic electrical stimulation of LC on response of layer V barrel cortical neurons in anesthetized rat. Methods: ...

متن کامل

The effect of ibotonic acid lesion of the nucleus basalis of Meynert (NBM) on the response of cortical neurons in the rat barrel cortex

In the present study, the effect of NBM lesion on the temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats was studied. Nucleus basalis of Meynert (NBM) projects to widespread areas of the cortex and provides the major cholinergic input (80%) to the cerebral cortex. In this study we examined the effects of NBM lesion on the respon...

متن کامل

The effect of ibotonic acid lesion of the nucleus basalis of Meynert (NBM) on the response of cortical neurons in the rat barrel cortex

In the present study, the effect of NBM lesion on the temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats was studied. Nucleus basalis of Meynert (NBM) projects to widespread areas of the cortex and provides the major cholinergic input (80%) to the cerebral cortex. In this study we examined the effects of NBM lesion on the respon...

متن کامل

Responses of primary somatosensory cortical neurons to controlled mechanical stimulation.

The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...

متن کامل

The emotive brain, the noradrenergic system, and cognition

Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010